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Levy statistics in Taylor dispersion
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The longitudinal dispersion for a fractal time random walker being dragged by a solvent flowing through a
tube is studied by means of the Langevin and Fokker-Planck formalisms. One observes that for asymptotic
long times the dispersion is superdiffusive despite the fact that in a resting background the characteristic
diffusion regime is subdiffusive. The resulting behavior is also at variance with the standard diffusive behavior
obtained in Taylor dispersion for a Brownian walkg$1063-651X%97)02911-5

PACS numbg(s): 05.60+w, 05.40:+j, 02.50—r, 47.15-x

[. INTRODUCTION with the Langevin equation for fractal time random walkers
in the absence of flow. In Sec. Il we generalize it to include

Lévy statistics appear in two generalizations of Brownianthe drag due to a solvent flowing through a tube and we
diffusion: fractal time random walkéFTRW’s) and Lery compute the mean square displacement in the flow direction
flights. These methods have proved useful to model a varietyith the help of a Fokker-Planck—like equation describing
of physical systems, from transport in amorphous materialéhe transverse diffusion of the g walker. Section IV con-

[1] or transport of magnetic holes in rotating magnetic fieldstains the conclusions.
[2] to diffusion in rotating fluidg 3] or turbulent diffusion in
plasmag4], among many other examplgs]. Il. LANGEVIN EQUATION FOR FTRW'S

In a previous articl§6] we made some connection be- ) o ] )
tween FTRW’s and Taylor dispersion. There, though, the Our .fII’St objgctlve he're is tp establish the fo.rm.of a
diffusive mechanism was modeled by means of a generalizeg@ngevin equation associated with a FTRW. To this aim we
continuous time random wallCTRW) formalism[7], where recall the usuz_il description of these rr_u_)vement_s within the
the particles remained fixed between successive juaps ~CTRW formalism, where the probability density of the
were not driven by the underlying flow during these perjods Walker who started at=0 from x=0 is, in the Fourier-

It was seen there that Taylor dispersion appeared only as fplace domain,
second-order phenomenon for long times.

A more realistic picture for ey diffusion in a flowing p(k,u)=
fluid, with the particles being continuously dragged by the ’
stream, therefore remains to be proposed. An important
question would then be whether, when such a system is rak(k,u) being the Fourier-Laplace transform of the distribu-
strained to flow through a pipe, Taylor dispersion turns out tdion of step lengths and waiting times of the walker and
be the relevant dispersion mechanism for long times, i.e.¢(u)=#(k=0,u) the Laplace transform of the distribution
whether the coupling of convection and transverse diffusior®f waiting times at a site. From this result it is straightfor-
brings about the leading term for the long time mean squarard to obtain the mean squared displacement of the walker
displacement. in terms of the distribution of step lengths and waiting times

A possible physical realization of such a system could beas
diffusion of macromolecules in flowing polymeric solutions.

1 1-¢(u)
ul-yku)'

In these systems, the entanglement of the diffusing macro- ) a*p(K,u) 1 1 azlﬂ(k,U)‘
molecules with the complex structures in the matrix has been (Ax%) =~ a2 T U1-e(w) P ‘ '
modeled in terms of a trapping time distribution with infinite k=0 k=0

ts[8] and has b hecked [ tally f I
g;ggg%ﬁ%éggg] as been checked experimentaly for geWhere we assumed thdi(x,t) is analytic and symmetric in

We intend here to approach this question by using the" If_we_ now choose a Gaussnanz form for the step Ie_ngth
Langevin equation combined with the diffusion equation asdistribution U(k,u) = p(u)exp(-o’k’), the mean square dis-
sociated with FTRW'’s. The use of the Langevin formalism placement of the random walker in continuous time is
for diffusion in nonhomogeneous flows is not ng—12.

Here we shall adapt th_e mefchod.s th_at were pre_sentét_izﬂn . (Ax2>=2023 ﬂ_ (1)
for the case of Brownian diffusion in Taylor dispersion in ul-e(u)

order to allow for Ly statistics in the waiting time distri- . . ) ) ) )
bution of the walker. This result will be our main connection with the Langevin

The structure of the paper is as follows. In Sec. Il we deafduation, which we propose in the form

dx
—=u(1), 2
*Electronic address: albert@telemaco.uab.es dt v(t) e
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where v (t) is a fluctuating velocity with vanishing mean and here we will propose one that most directly generalizes

(v(t))=0. From Eg.(2) the mean square displacementour previous derivations: We take the stable law

(Ax?) can be written as e(u)=exd —(un)?], with 0<y<1l. One then has the
asymptotic subdiffusive behavior typical for FTRW’s:

P P Ax?)=2D t"T(1+7y), with D,=¢?/7". The Laplace
(A= fodt fodt (0o (), © §rans>form gf the associated velgcity correlation function is
given by formula(6) and, keeping as before just the three
whence lowest orders inu7 to compute exp(7)?, one has
d(AX2> t , , ul*y
at =2f0dt (v(0)u(t")), 4 F(w=Du'" Y ————.
1+ 577u”

where’ we assume that the velocity correlation functiontpe aplace inversion of this function is carried out with the
F(t—t)=(v(t)v(t')) depends just on the difference of he|y of generalized Mittag-Leffler functionee, for in-
times and is a symmetric function of its arguméassump- stance[6])

tion of stationarity. At this point our aim is to find an ex-

pression for the velocity correlation functiofR(t) for a 2 £\ 1

walker obeying a statistics of waiting times given byt). F(t)= —yDytz“/ZEszyl[—z(ﬁ . 5<7<1 (®
To this end we can write Ed4) in the Laplace domain and T

obtain

where we restrict further our parametgin order to express
F(t) in terms of Mittag-Leffler functions; in the range
0<y<3 we instead obtain more complex functioffox’s

H functions; se¢6]). Therefore, expressiai®) describes the

assuming a vanishing initial dispersion. We now combineSécond moments of the stochastic variabla our Eq.(2).

Egs.(1) and(5) to get the Laplace inversion of the velocity '€ result(8) has the prcz/egrty of having at long times a
correlation function of a CTRW with a Gaussian distribution N€gative long taiF (t)~ —t""%, a known result in the theory
of step lengths and an arbitrary distribution of waiting timesCf @nomalous diffusiof15].

F(u)

u(Ax2>(u)=2T, 5

t 1
eV lll. FTRW'S IN TAYLOR DISPERSION
F(u):azulLu()). (6) We shall now follow[12] to derive the dispersion prop-

erties of FTRW’s undergoing Taylor dispersion. To this aim
we imagine a longitudinal steady flow between two parallel
plates aty=0 andy=1 given by the velocity fieldV,(y),
where we release a tracer whose diffusion is governed by

We first prove this expression for a Brownian random
walker, wherep(t) = 6(t— 7), 7 being the fixed waiting time
between steps. We thus hayéu) =exp(—ur) and the ve-

locity correlation function given by Ed6) turns out to be, in
the Laplace domain,

ur

F(u)=D ,
(W=D1

Levy statistics as a FTRW. The objective is to establish the
longitudinal dispersion behavior of the tracer, that is, in the

flow direction. As in[12], independent motion in theandy

directions is assumed and diffusion is taken to be isotropic in
a fluid at rest, whence the same diffusiviy, applies to
each direction. So one incorporates in the Langevin equation

(2) for the x direction the drag due to the solvent
with D,=0?/7. To compute the Laplace inverse of this ex-
pression we just keep the three lowest orders of the exponen-
tial asur—0 (we therefore assume observation times much
longer than the microscopic waiting time t>7) and get

dx_
gt = )+, ©

which leads to

2D
F(t)= Tle—ﬂ’f. (7)

)= [ at [[arnv ) - (o)
0 0

This result can now be compared with the velocity correla-
tion function for a Brownian walker as described by the stan-
dard Langevin equation for a particle in a viscous medium
[13] and we identify the friction coefficient in Eq7) as 2.

We now want to find the velocity correlation function  As seen in Sec. I, the second term in Ef0) provides
associated with a FTRW. To this aim we only have to intro-2D ,t”/T'(1+ y), namely, the diffusion in the absence of a
duce in Eq(6) a waiting time distribution functiop(t) with  velocity field. The first integral, on the other hand, describes
an infinite first momentundefined mean waiting timeThe  the dispersion due to the coupling between transverse diffu-
absence of a characteristic waiting time scale suffices to insion and the velocity profile, i.e., Taylor dispersion. In order
troduce anomalities in the diffusion process, following theto perform the averages appearing in Eb0), we need to
properties of gy statistics[14]. Many choices are possible use the two-time probability distribution function

t t
X(Vx(y(t”))>]+J;dt’fodt"<v(t’)v(t”)>. (10



Po(y,ty' t")=P(y,t—t'|y )Py’ ,t"),

with P(y,t—t’]y’) the conditional probability distribution

andP(y’,t") the one-time probability density. For the sake

of simplicity, we consider a uniform initial distribution of
tracer particles along atx=0, so that for all times one has
P(y',t")=1A.

Therefore, our first calculations will be aimed at obtaining

the conditional probability distribution of particles with co-
ordinatey at timet given the fact that at tim& they were in
y': P(y,t—t’|y’). We then start by using the diffusion equa-
tion. Since we are considering \ae statistics in time, this
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nwy nwy’
C0S——CO0S——.

| |
(16)

E Ey,l

2
=1

acl

Now, with the help of Eq(16), the averages in Eq10)
yield

, 1
P(y.tly")= Tt

(V(1)=V,, (17)

t—t']

_ 1=
(Vo (HV,(t"))=V, 2+ Engl vﬁE%l( ) (18)

Tn

diffusion equation must correspondingly be the one associ-

ated with FTRW's, as obtained [16,17], and written for the
y direction,

ot PPy, t—t'ly")
ay? ’

where the operata#®/dt* stands for the Riemann-Liouville
fractional derivative of ordea [18]. We now solve Eq(11)
for the initial condition

P(y,0ly")=a(y—y")
and the boundary condition of impenetrability at the plates

aP(y,tly")
ay

JP(yt—t'ly’)
at B

7(9,[1_7 (11)

12

=0.
y=0|

13

where we drop the condition>t" by introducing the abso-
lute value in Eq.(18), V, stands for the section average of
the velocity fieldV,(y) andv, is thenth Fourier coefficient

of Vi(y),

2
Un=T

| nwy
fOVx(Y)COSTdY-

Combining Eq.(10) with the result§17) and (18) we find

t—t"\
Th

(Ax2>(t)=n§=)1 vﬁJtdt” tdt’E%l[—(

0 t"

2Dt
T
I'(l+vy)

By first resorting to the Laplace domain and then inverting

The solution will be a superposition of modes, whose spatiajhe resulting expressions, the dispersion of the solute be-

dependences in the present problem are meog(),
n=0,1,2.... Then, we define the Fourier coefficients of
P(y.tly’) as

nmwy
y’)cosl—dy

2 [
Pn(t|y/): TJOP(th

and compute their first derivative with the help of E¢kl)
and(13) and repeated integration by parts to obtain

n2@? 91 YPL(t]y")
72 gt

IPa(tly")
.

(14

Thus 7,=(n?w?D, /1%~ gives the decaying time of the
nth diffusive mode. Equatiofil4) is now easy to solve in the
Laplace domain, yielding

-1
Pa(uly’) = —————P,(t=0]y"),
n(uly”) T (r) n(t=0ly")

comes

t\7
T—) } (19

2D.t7 &
0= g+, e,

Let us note that at long times, i.e., for (7?D ., /12) 17,
one can retain only the leading term in the function
E,s(X)=x"1I'(3- ), so that Eq(19) yields

Dt” 2

T(1+y) T(3—7)

(Ax?)(t)= Dr(y)t?" 7+ 0(t*~27),

(20

with D1(y)=%3,-1"v27} a generalized Taylor dispersion
coefficient[19], since it involves both the velocity of the
flow and the diffusion constam , and it therefore represents
the typical coupling of advection and transverse diffusion in
Taylor dispersion. It is interesting to notice that the Taylor
dispersion contribution is not diffusive, but it grows s ¥

in contrast to what is found for Brownian diffusion or per-

which has a direct inversion in the form of a generalizedsistent random walkg20].

Mittag-Leffler function(see, for instancdg]) as

!

nwy

COS——,

i (19

2 t\?”
P”(t|y,):|_E7'1[_(T_n)

where E,, n(x) =2 _ox™/T'(ym+n). In Eq. (15 we have
written already the explicit form oP,(t=0;y’) for our par-
ticular initial condition(12). The solution for our conditional
probability distribution is therefore

We observe in Eq20) that the regime is superdiffusive
since O<y<1. It may seem at first sight paradoxical that the
slower the transverse diffusiosmaller y), the faster the
longitudinal dispersion. Let us remember that this situation is
analogous to the inverse proportionality of the Taylor disper-
sion coefficientD+ with the molecular diffusivityD in stan-
dard Taylor dispersionDt<D 1. The interpretation is also
the same: The slower the transverse diffusion, the longer the
fast particles remain in the fast layers and the slow particles
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in the slow ones, so that the rate at which they separatthan Taylor dispersion and, conversely, when0 the tracer
longitudinally from each other is faster. in [6] is practically permanently static whereas here it keeps
Let us also note that the dispersion coeffici@y(y) advancing with the stream in an almost convective manner.
is basically the same as in standard Taylor dispersioffhe fact that this ballistic limit is attained for different ex-
except_thatD, replacesD. Then we have, in general, tremal values ofy here and in6] is quite remarkable. It is
Ax2~V212D*t2~7, which establishes howx? scales with ~ IS0 to be noted that if6] a macroscopic parametérmust

the section size, the average velocity, and the transverse di€ included in order to ensure a good correspondence be-
fusion coefficient. It can also be observed that, contrarily tgween the stochastics and the macroscopic results. This pa-
Brownian Taylor dispersionD; and D, do not have the rameter does not appear here and should be accounted for
same dimensions, this being a consequence of the fact thyhen treating the model of this article with the stochastic

they are associated with different diffusion regin{eaper- ~ formalism of[6]. o
diffusion and subdiffusion, respectively Finally, we stress that the results obtained in the present

Let us examine the limit cases. As— 1, one recovers the WOrk are not restricted to flows between parallel plates, but
diffusive dispersion, namely,(Ax2)=2(D,+Dq)t. As the calculations can be easily generalized to arbitrary section
y—0, that is, when the jumps between layers are rare ongeometries. The spatial dependence of the diffusive modes
expects that the tracer essentially follows the velocity profile2nd their decaying times would change accordingly, but the

and hencéAx2)=t2 , as it indeed ensues from ERO). dispersion would still be given by Eqg&l9) and (20).
At short times, on the other hand, one lEBg;(x—0)—1
and Eq.(19) yields IV. CONCLUSIONS

We have calculated the mean square displacement for a
fractal time random walker that is suspended in a solvent
flowing through a tube. To this end, we have performed a
The first term corresponds to diffusion in the absence of &tochastic analysis by using a Langevin equation and a
flow and the second one is the drag for an initially uniform Fokker-Planck—like equation for the transverse diffusion of
distribution of solute ak=0. the walker. One finds for asymptotic long times that the dis-

At this point we can now compare with the resultd 67, persion is mainly due to the coupling of advection and trans-
where the leading term for the dispersion at long timesverse diffusion, whence we have an example of Taylor dis-
[again t>(72D,/12)~¥"] grew ast?”. The macroscopic persion. Furthermore(Ax®) has been seen to grow
setup is very much the same in this paper anfbinbut the ~ asymptotically ag?~” and hence the dispersion is superdif-
essential difference lies on the stochastic model used ttusive for y<<1, in contrast to the diffusive growth usually
implement the FTRW: Irj6] the diffusing particles remain displayed in Taylor dispersion, where the solvent diffuses in
fixed in space, transparent to the fluid stream, during th¢he solvent in a Brownian way. Wheptends to 1(Brown-
waiting periods between successive steps. This was effe¢an diffusion one recovers the standard diffusive behavior.
tively seen in[6] to explain the asymptotic behavioa x?) For y—0 the dispersion approaches a ballistic regime, as
«t2” on the grounds of purely advective phenomena, so thatorresponds to the absence of transverse diffusion. Although
the essential ingredients of Taylor dispersion were nothe calculations have been performed in this work for flows
present in this leading term. In the current paper, in contrastyetween parallel plates for the sake of simplicity, they can be
the tracer particles are continuously being dragged by theasily adapted for arbitrary section geometries and the results
flow and this yields a different dispersion la@x?yct>~7,  are therefore general.
always superdiffusive since0y<<1 and associated with the
coupling of advection and transverse diffusiOraylor dis-
persion. Interesting from this comparison is the fact that
vy=2/3 marks the transition from a situation in which the  The authors wish to express their gratitude to Professor
model of [6] is more efficient in dispersing the tracer David Jou and Professor Jo8asas-Vaquez for their inter-
(y>2/3) than the model presented here, and the converssst in this work. A.C. was supported by the Programa de
situation for y<<2/3. The existence of such a transition is Formacio d’Investigadors of the Direcci@General de Re-
indeed logical since, assuming the extremal valuesyfoit ~ cerca of the Generalitat de Catalunya. Financial support from
becomes clear that for a FTRW with=1 (almost Brown- the DGICYT of the Spanish Ministry of Education under
ian) pure convection is much more efficient for dispersionGrant No. PB94-0718 is acknowledged as well.

2Dt —
<AX2> = F(l—l’y) +V>2<t2+ O(tzy).
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