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Lévy statistics in Taylor dispersion

Albert Compte* and Juan Camacho
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~Received 12 May 1997!

The longitudinal dispersion for a fractal time random walker being dragged by a solvent flowing through a
tube is studied by means of the Langevin and Fokker-Planck formalisms. One observes that for asymptotic
long times the dispersion is superdiffusive despite the fact that in a resting background the characteristic
diffusion regime is subdiffusive. The resulting behavior is also at variance with the standard diffusive behavior
obtained in Taylor dispersion for a Brownian walker.@S1063-651X~97!02911-5#

PACS number~s!: 05.60.1w, 05.40.1j, 02.50.2r, 47.15.2x
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I. INTRODUCTION

Lévy statistics appear in two generalizations of Browni
diffusion: fractal time random walks~FTRW’s! and Lévy
flights. These methods have proved useful to model a var
of physical systems, from transport in amorphous mater
@1# or transport of magnetic holes in rotating magnetic fie
@2# to diffusion in rotating fluids@3# or turbulent diffusion in
plasmas@4#, among many other examples@5#.

In a previous article@6# we made some connection b
tween FTRW’s and Taylor dispersion. There, though,
diffusive mechanism was modeled by means of a general
continuous time random walk~CTRW! formalism@7#, where
the particles remained fixed between successive jumps~and
were not driven by the underlying flow during these period!.
It was seen there that Taylor dispersion appeared only
second-order phenomenon for long times.

A more realistic picture for Le´vy diffusion in a flowing
fluid, with the particles being continuously dragged by t
stream, therefore remains to be proposed. An impor
question would then be whether, when such a system is
strained to flow through a pipe, Taylor dispersion turns ou
be the relevant dispersion mechanism for long times,
whether the coupling of convection and transverse diffus
brings about the leading term for the long time mean squ
displacement.

A possible physical realization of such a system could
diffusion of macromolecules in flowing polymeric solution
In these systems, the entanglement of the diffusing ma
molecules with the complex structures in the matrix has b
modeled in terms of a trapping time distribution with infini
moments@8# and has been checked experimentally for
electrophoresis@9#.

We intend here to approach this question by using
Langevin equation combined with the diffusion equation
sociated with FTRW’s. The use of the Langevin formalis
for diffusion in nonhomogeneous flows is not new@10–12#.
Here we shall adapt the methods that were presented in@12#
for the case of Brownian diffusion in Taylor dispersion
order to allow for Lévy statistics in the waiting time distri
bution of the walker.

The structure of the paper is as follows. In Sec. II we d
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with the Langevin equation for fractal time random walke
in the absence of flow. In Sec. III we generalize it to inclu
the drag due to a solvent flowing through a tube and
compute the mean square displacement in the flow direc
with the help of a Fokker-Planck–like equation describi
the transverse diffusion of the Le´vy walker. Section IV con-
tains the conclusions.

II. LANGEVIN EQUATION FOR FTRW’S

Our first objective here is to establish the form of
Langevin equation associated with a FTRW. To this aim
recall the usual description of these movements within
CTRW formalism, where the probability density of th
walker who started att50 from x50 is, in the Fourier-
Laplace domain,

r~k,u!5
1

u

12w~u!

12c~k,u!
,

c(k,u) being the Fourier-Laplace transform of the distrib
tion of step lengths and waiting times of the walker a
w(u)5c(k50,u) the Laplace transform of the distributio
of waiting times at a site. From this result it is straightfo
ward to obtain the mean squared displacement of the wa
in terms of the distribution of step lengths and waiting tim
as

^Dx2&52
]2r~k,u!

]k2 U
k50

52
1

u

1

12w~u!

]2c~k,u!

]k2 U
k50

,

where we assumed thatc(x,t) is analytic and symmetric in
x. If we now choose a Gaussian form for the step len
distributionc(k,u)5w(u)exp(2s2k2), the mean square dis
placement of the random walker in continuous time is

^Dx2&52s2
1

u

w~u!

12w~u!
. ~1!

This result will be our main connection with the Langev
equation, which we propose in the form

dx

dt
5v~ t !, ~2!
5445 © 1997 The American Physical Society
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5446 56ALBERT COMPTE AND JUAN CAMACHO
where v(t) is a fluctuating velocity with vanishing mea
^v(t)&50. From Eq. ~2! the mean square displaceme
^Dx2& can be written as

^Dx2&5E
0

t

dt8E
0

t

dt9^v~ t8!v~ t9!&, ~3!

whence

d^Dx2&
dt

52E
0

t

dt8^v~0!v~ t8!&, ~4!

where we assume that the velocity correlation funct
F(t2t8)5^v(t)v(t8)& depends just on the difference o
times and is a symmetric function of its argument~assump-
tion of stationarity!. At this point our aim is to find an ex
pression for the velocity correlation functionF(t) for a
walker obeying a statistics of waiting times given byw(t).
To this end we can write Eq.~4! in the Laplace domain and
obtain

u^Dx2&~u!52
F~u!

u
, ~5!

assuming a vanishing initial dispersion. We now comb
Eqs.~1! and ~5! to get the Laplace inversion of the veloci
correlation function of a CTRW with a Gaussian distributi
of step lengths and an arbitrary distribution of waiting tim
w(t),

F~u!5s2u
w~u!

12w~u!
. ~6!

We first prove this expression for a Brownian rando
walker, wherew(t)5d(t2t), t being the fixed waiting time
between steps. We thus havew(u)5exp(2ut) and the ve-
locity correlation function given by Eq.~6! turns out to be, in
the Laplace domain,

F~u!5D1

ut

eut21
,

with D15s2/t. To compute the Laplace inverse of this e
pression we just keep the three lowest orders of the expo
tial asut→0 ~we therefore assume observation times mu
longer than the microscopic waiting timet: t@t) and get

F~ t !5
2D1

t
e22t/t. ~7!

This result can now be compared with the velocity corre
tion function for a Brownian walker as described by the st
dard Langevin equation for a particle in a viscous medi
@13# and we identify the friction coefficient in Eq.~7! as 2/t.

We now want to find the velocity correlation functio
associated with a FTRW. To this aim we only have to int
duce in Eq.~6! a waiting time distribution functionw(t) with
an infinite first moment~undefined mean waiting time!. The
absence of a characteristic waiting time scale suffices to
troduce anomalities in the diffusion process, following t
properties of Le´vy statistics@14#. Many choices are possibl
n

e

n-
h

-
-

-

n-

and here we will propose one that most directly generali
our previous derivations: We take the stable la
w(u)5exp@2(ut)g#, with 0,g,1. One then has the
asymptotic subdiffusive behavior typical for FTRW’s
^Dx2&52Dgtg/G(11g), with Dg5s2/tg. The Laplace
transform of the associated velocity correlation function
given by formula~6! and, keeping as before just the thre
lowest orders inut to compute exp(ut)g, one has

F~u!5Dgu12g
u12g

11 1
2 tgug

.

The Laplace inversion of this function is carried out with t
help of generalized Mittag-Leffler functions~see, for in-
stance,@6#!

F~ t !5
2

tg
Dgt2g22Eg,2g21F22S t

t D gG , 1

2
,g,1, ~8!

where we restrict further our parameterg in order to express
F(t) in terms of Mittag-Leffler functions; in the rang
0,g, 1

2 we instead obtain more complex functions~Fox’s
H functions; see@6#!. Therefore, expression~8! describes the
second moments of the stochastic variablev in our Eq.~2!.
The result~8! has the property of having at long times
negative long tailF(t);2tg22, a known result in the theory
of anomalous diffusion@15#.

III. FTRW’S IN TAYLOR DISPERSION

We shall now follow@12# to derive the dispersion prop
erties of FTRW’s undergoing Taylor dispersion. To this a
we imagine a longitudinal steady flow between two para
plates aty50 and y5 l given by the velocity fieldVx(y),
where we release a tracer whose diffusion is governed
Lévy statistics as a FTRW. The objective is to establish
longitudinal dispersion behavior of the tracer, that is, in t
flow direction. As in@12#, independent motion in thex andy
directions is assumed and diffusion is taken to be isotropi
a fluid at rest, whence the same diffusivityDg applies to
each direction. So one incorporates in the Langevin equa
~2! for the x direction the drag due to the solvent

dx

dt
5Vx„y~ t !…1v~ t !, ~9!

which leads to

^Dx2&5E
0

t

dt8E
0

t

dt9@^Vx„y~ t8!…Vx„y~ t9!…&2^Vx„y~ t8!…&

3^Vx„y~ t9!…&#1E
0

t

dt8E
0

t

dt9^v~ t8!v~ t9!&. ~10!

As seen in Sec. II, the second term in Eq.~10! provides
2Dgtg/G(11g), namely, the diffusion in the absence of
velocity field. The first integral, on the other hand, describ
the dispersion due to the coupling between transverse d
sion and the velocity profile, i.e., Taylor dispersion. In ord
to perform the averages appearing in Eq.~10!, we need to
use the two-time probability distribution function
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P2~y,t;y8,t8!5P~y,t2t8uy8!P~y8,t8!,

with P(y,t2t8uy8) the conditional probability distribution
and P(y8,t8) the one-time probability density. For the sa
of simplicity, we consider a uniform initial distribution o
tracer particles alongy at x50, so that for all times one ha
P(y8,t8)51/l .

Therefore, our first calculations will be aimed at obtaini
the conditional probability distribution of particles with co
ordinatey at timet given the fact that at timet8 they were in
y8: P(y,t2t8uy8). We then start by using the diffusion equ
tion. Since we are considering Le´vy statistics in time, this
diffusion equation must correspondingly be the one ass
ated with FTRW’s, as obtained in@16,17#, and written for the
y direction,

]P~y,t2t8uy8!

]t
5Dg

]12g

]t12g

]2P~y,t2t8uy8!

]y2
, ~11!

where the operator]a/]ta stands for the Riemann-Liouville
fractional derivative of ordera @18#. We now solve Eq.~11!
for the initial condition

P~y,0uy8!5d~y2y8! ~12!

and the boundary condition of impenetrability at the plate

]P~y,tuy8!

]y U
y50,l

50. ~13!

The solution will be a superposition of modes, whose spa
dependences in the present problem are cos(npy/l),
n50,1,2, . . . . Then, we define the Fourier coefficients
P(y,tuy8) as

Pn~ tuy8!5
2

l E0

l

P~y,tuy8!cos
npy

l
dy

and compute their first derivative with the help of Eqs.~11!
and ~13! and repeated integration by parts to obtain

]Pn~ tuy8!

]t
52Dg

n2p2

l 2

]12gPn~ tuy8!

]t12g
. ~14!

Thus tn[(n2p2Dg / l 2)21/g gives the decaying time of th
nth diffusive mode. Equation~14! is now easy to solve in the
Laplace domain, yielding

Pn~uuy8!5
u21

11~tnu!2g
Pn~ t50uy8!,

which has a direct inversion in the form of a generaliz
Mittag-Leffler function~see, for instance,@6#! as

Pn~ tuy8!5
2

l
Eg,1F2S t

tn
D gGcos

npy8

l
, ~15!

where Eg,n(x)5(m50
` xm/G(gm1n). In Eq. ~15! we have

written already the explicit form ofPn(t50;y8) for our par-
ticular initial condition~12!. The solution for our conditiona
probability distribution is therefore
i-

al

P~y,tuy8!5
1

l
1

2

l (n51

`

Eg,1F2S t

tn
D gGcos

npy

l
cos

npy8

l
.

~16!

Now, with the help of Eq.~16!, the averages in Eq.~10!
yield

^Vx~ t !&5Vx, ~17!

^Vx~ t !Vx~ t8!&5Vx
21

1

2 (
n51

`

vn
2Eg,1S 2

ut2t8ug

tn
g D , ~18!

where we drop the conditiont.t8 by introducing the abso-
lute value in Eq.~18!, Vx stands for the section average
the velocity fieldVx(y) andvn is thenth Fourier coefficient
of Vx(y),

vn5
2

l E0

l

Vx~y!cos
npy

l
dy.

Combining Eq.~10! with the results~17! and ~18! we find

^Dx2&~ t !5 (
n51

`

vn
2E

0

t

dt9E
t9

t

dt8Eg,1F2S t82t9

tn
D gG

1
2Dgtg

G~11g!
.

By first resorting to the Laplace domain and then inverti
the resulting expressions, the dispersion of the solute
comes

^Dx2&~ t !5
2Dgtg

G~11g!
1 (

n51

`

vn
2t2Eg,3F2S t

tn
D gG . ~19!

Let us note that at long times, i.e., fort@(p2Dg / l 2)21/g,
one can retain only the leading term in the functi
Eg,3(x).x21/G(32g), so that Eq.~19! yields

^Dx2&~ t !5
2Dgtg

G~11g!
1

2

G~32g!
DT~g!t22g1O~ t222g!,

~20!

with DT(g)[ 1
2 (n51

`vn
2tn

g a generalized Taylor dispersio
coefficient @19#, since it involves both the velocity of the
flow and the diffusion constantDg and it therefore represent
the typical coupling of advection and transverse diffusion
Taylor dispersion. It is interesting to notice that the Tay
dispersion contribution is not diffusive, but it grows ast22g

in contrast to what is found for Brownian diffusion or pe
sistent random walks@20#.

We observe in Eq.~20! that the regime is superdiffusiv
since 0,g,1. It may seem at first sight paradoxical that t
slower the transverse diffusion~smaller g), the faster the
longitudinal dispersion. Let us remember that this situation
analogous to the inverse proportionality of the Taylor disp
sion coefficientDT with the molecular diffusivityD in stan-
dard Taylor dispersion:DT}D21. The interpretation is also
the same: The slower the transverse diffusion, the longer
fast particles remain in the fast layers and the slow partic
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5448 56ALBERT COMPTE AND JUAN CAMACHO
in the slow ones, so that the rate at which they sepa
longitudinally from each other is faster.

Let us also note that the dispersion coefficientDT(g)
is basically the same as in standard Taylor dispers
except thatDg replacesD. Then we have, in genera

Dx2;Vx
2l 2Dg

21t22g, which establishes howDx2 scales with
the section size, the average velocity, and the transverse
fusion coefficient. It can also be observed that, contrarily
Brownian Taylor dispersion,DT and Dg do not have the
same dimensions, this being a consequence of the fact
they are associated with different diffusion regimes~super-
diffusion and subdiffusion, respectively!.

Let us examine the limit cases. Asg→1, one recovers the
diffusive dispersion, namely,^Dx2&52(D11DT)t. As
g→0, that is, when the jumps between layers are rare,
expects that the tracer essentially follows the velocity pro
and hencêDx2&}t2 , as it indeed ensues from Eq.~20!.

At short times, on the other hand, one hasEg,3(x→0)→1
and Eq.~19! yields

^Dx2&5
2Dgtg

G~11g!
1Vx

2t21O~ t2g!.

The first term corresponds to diffusion in the absence o
flow and the second one is the drag for an initially unifo
distribution of solute atx50.

At this point we can now compare with the results of@6#,
where the leading term for the dispersion at long tim
@again t@(p2Dg/ l 2)21/g# grew as t2g. The macroscopic
setup is very much the same in this paper and in@6#, but the
essential difference lies on the stochastic model used
implement the FTRW: In@6# the diffusing particles remain
fixed in space, transparent to the fluid stream, during
waiting periods between successive steps. This was e
tively seen in@6# to explain the asymptotic behavior^Dx2&
}t2g on the grounds of purely advective phenomena, so
the essential ingredients of Taylor dispersion were
present in this leading term. In the current paper, in contr
the tracer particles are continuously being dragged by
flow and this yields a different dispersion laŵDx2&}t22g,
always superdiffusive since 0,g,1 and associated with th
coupling of advection and transverse diffusion~Taylor dis-
persion!. Interesting from this comparison is the fact th
g52/3 marks the transition from a situation in which th
model of @6# is more efficient in dispersing the trace
(g.2/3) than the model presented here, and the conv
situation for g,2/3. The existence of such a transition
indeed logical since, assuming the extremal values forg, it
becomes clear that for a FTRW withg.1 ~almost Brown-
ian! pure convection is much more efficient for dispersi
te

n

if-
o

at

e
e

a
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to

e
c-

at
t
t,
e

t

se

than Taylor dispersion and, conversely, wheng.0 the tracer
in @6# is practically permanently static whereas here it kee
advancing with the stream in an almost convective mann
The fact that this ballistic limit is attained for different ex
tremal values ofg here and in@6# is quite remarkable. It is
also to be noted that in@6# a macroscopic parameterA must
be included in order to ensure a good correspondence
tween the stochastics and the macroscopic results. This
rameter does not appear here and should be accounte
when treating the model of this article with the stochas
formalism of @6#.

Finally, we stress that the results obtained in the pres
work are not restricted to flows between parallel plates,
the calculations can be easily generalized to arbitrary sec
geometries. The spatial dependence of the diffusive mo
and their decaying times would change accordingly, but
dispersion would still be given by Eqs.~19! and ~20!.

IV. CONCLUSIONS

We have calculated the mean square displacement f
fractal time random walker that is suspended in a solv
flowing through a tube. To this end, we have performed
stochastic analysis by using a Langevin equation an
Fokker-Planck–like equation for the transverse diffusion
the walker. One finds for asymptotic long times that the d
persion is mainly due to the coupling of advection and tra
verse diffusion, whence we have an example of Taylor d
persion. Furthermore,̂ Dx2& has been seen to grow
asymptotically ast22g and hence the dispersion is superd
fusive for g,1, in contrast to the diffusive growth usuall
displayed in Taylor dispersion, where the solvent diffuses
the solvent in a Brownian way. Wheng tends to 1~Brown-
ian diffusion! one recovers the standard diffusive behavi
For g→0 the dispersion approaches a ballistic regime,
corresponds to the absence of transverse diffusion. Altho
the calculations have been performed in this work for flo
between parallel plates for the sake of simplicity, they can
easily adapted for arbitrary section geometries and the res
are therefore general.
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